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Motivation

• Reinforcement learning (RL) can autonomously discover 

optimal behavior from a reward function

…But can be 

sample inefficient
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Motivation

• Imitation learning (IL) methods can learn behaviors from 

demonstrations with high sample efficiency

…but usually 

assumes multiple, 

optimal, state-

action  

demonstrations 
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Challenges of Combining RL and IL

● IL objective: divergence minimization from demonstration 

distribution [1, 2]

● RL objective: cumulative task reward

4

Suboptimal demonstrations ⇒ Potential conflict 

between IL and RL objectives!

[1] Ghasemipour et al., A divergence minimization perspective on imitation learning methods, CoRL 2019.

[2] Ke et al., imitation learning as f-divergence minimization, WAFR 2020.
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Can we improve sample efficiency of 

reinforcement learning with minimal 

demonstration knowledge,

while preserving optimality guarantees?

We assume access to a single, suboptimal, 

state-only demonstration trajectory. 
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Background

● Markov decision process 

○ Horizon H

○ Objective:

● Imitation from observation [1]: assumes access to state-only demonstrations 

6[1] Torabi et al., Recent advances in imitation from observation, IJCAI 2019.
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Background

● Potential-based reward shaping (PBRS) [1]: 

○ Learning is conducted in modified MDP,                                                        

where 

○ Policy invariance

● Goal-conditioned RL (GCRL) [2, 3]:

○ Given a goal-reaching task, objective is to learn a goal-conditioned 

policy 𝜋(·| [s, g]) that can reach any goal g drawn from goal set G

○ Reward function is typically sparsely informative

○ E.g.
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[1] Ng et al., Policy invariance under reward transformations, ICML 1999.

[2] Schaul et al., Universal value function approximators, ICML 2015.

[3] Kaelbling, Learning to achieve goals,  IJCAI 1993.
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D-Shape: Shaping reinforcement learning with a suboptimal 

demonstration trajectory
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Method Summary

● Demonstration states as goals

● Goal-reaching potential reward

● Goal relabelling with achieved states (Hindsight 

Experience Replay) [1]

Policy invariance guarantee

Theorem 1: An optimal goal-conditioned policy 

learned by D-Shape can be optimally executed with 

any sequence of goals.
20

[1] Andrychowicz et al, Hindsight experience replay, Neurips 2017.

D-Shape: Shaping reinforcement learning with a suboptimal  

demonstration trajectory
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Experimental Setting

• Goal-based s x s gridworld, 

• Baselines: 

– Q-learning [1]

– SBS [2]

– RIDM [3]

– RL+ Manhattan distance reward

• Demonstrations: optimal, suboptimal

• Desiderata: 

– sample efficiency

– convergence to optimal returns

21

[1] Watkins, Learning from delayed rewards, PhD dissertation, 1989. 

[2] Brys et al., Reinforcement learning from demonstration through shaping, IJCAI 2015. 

[3] Pavse et al., RIDM: Reinforced inverse dynamics modelling for learning from a single observed demonstration,  IROS 2020. 
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1. D-Shape improves sample efficiency
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D-Shape State Visitation
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2. Learning with suboptimal demonstrations

Suboptimality Type I : demonstration trajectory goes to incorrect goal state
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2. Learning with suboptimal demonstrations

Suboptimality Type I : demonstration trajectory goes to incorrect goal state
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Conclusions

● D-Shape accelerates reinforcement learning given access to a single state-

only demonstration

● Future work: 

○ Extending method to multiple demonstrations

○ Learned distance metrics for continuous state-action spaces

○ Exploring other GCRL techniques for RL + IL
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Thanks for listening!

Caroline Wang
caroline.l.wang@utexas.edu

Peter Stone
pstone@cs.utexas.edu

https://arxiv.org/abs/2210.14428Garrett Warnell
garrett.a.warnell.civ@army.mi 33
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Related Works

● RL+IL

○ Constructing rewards with demonstrations

■ Annealing hybrid rewards: Ding et al. 2019; Zolna et al. 2019.

○ Plan based reward shaping w/demos: Brys et al. 2015; Suay et al. 2016; Wu et 

al. 2021.

○ Optimizing only the task reward: 

■ State augmentation: Pavse et al. 2020; Paine et al. 2018.

■ Resetting: Salimans and Chen 2018; Ecoffet et al. 2021; Nair et al. 2018.

■ Initializing with demonstration information: Hester et al. 2018; Taylor et al. 

2011.

● Accelerating goal-conditioned RL with demonstrations

○ Nair et al. 2018; Paul et al. 2019.
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