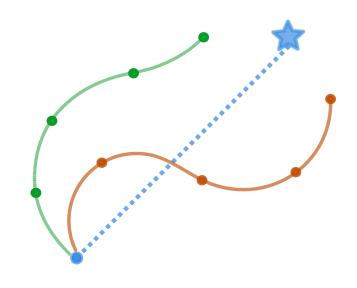


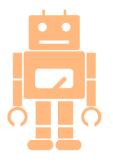
D-Shape: Demonstration Shaped Reinforcement Learning via Goal-Conditioning

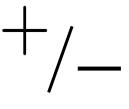


Caroline Wang¹, Garrett Warnell^{1, 2}, Peter Stone^{1, 3}

Motivation

• Reinforcement learning (RL) can autonomously discover optimal behavior from a reward function





...But can be sample inefficient

Motivation

 Imitation learning (IL) methods can learn behaviors from demonstrations with high sample efficiency

...but usually assumes multiple, optimal, state-action demonstrations

Challenges of Combining RL and IL

• IL objective: divergence minimization from demonstration distribution [1, 2]

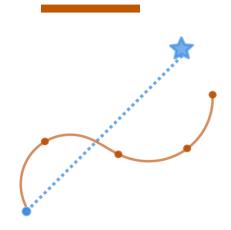
• RL objective: cumulative task reward

Suboptimal demonstrations ⇒ Potential conflict between IL and RL objectives!

^[1] Ghasemipour et al., A divergence minimization perspective on imitation learning methods, CoRL 2019.

^[2] Ke et al., imitation learning as f-divergence minimization, WAFR 2020.

Can we *improve sample efficiency* of reinforcement learning with minimal demonstration knowledge, while *preserving optimality guarantees*?



We assume access to a single, suboptimal, state-only demonstration trajectory.

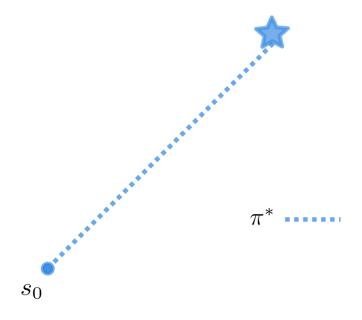
Background

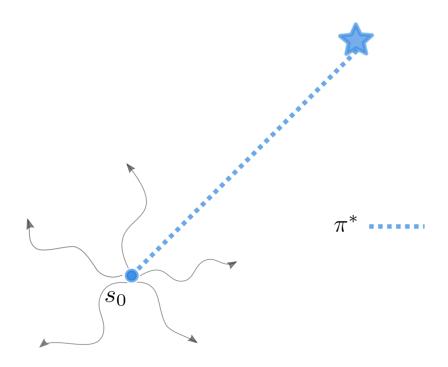
- Markov decision process $M = (S, A, P, r^{task}(s, a, s'), \gamma)$
 - Horizon *H*
 - \circ Objective: $\mathbf{E}_{\pi}[\sum_{t=0}^{H-1} \gamma^{t} r^{task}]$
- Imitation from observation [1]: assumes access to state-only demonstrations

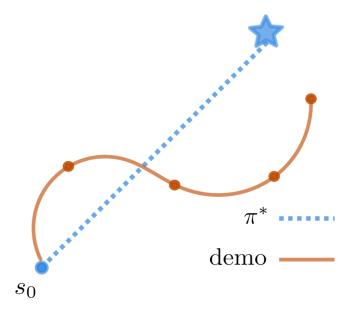
$$D^e = \{s^e_t\}_{t=1}^{H}$$

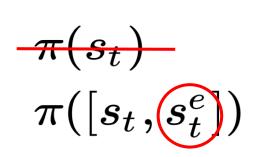
Background

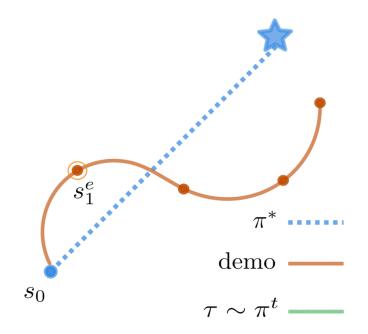
- Potential-based reward shaping (PBRS) [1]:
 - Learning is conducted in modified MDP, where $M = (S, A, P, R' := r^{task} + F, \gamma)$
 - Policy invariance $F(s, s') = \gamma \phi(s') \phi(s)$.
- Goal-conditioned RL (GCRL) [2, 3]:
 - Given a goal-reaching task, objective is to learn a goal-conditioned policy $\pi(\cdot/[s, g])$ that can reach any goal g drawn from goal set G
 - Reward function is typically sparsely informative
 - \circ E.g. $r_t^g = 1_{s_t=q}$
- [1] Ng et al., Policy invariance under reward transformations, ICML 1999.
- [2] Schaul et al., Universal value function approximators, ICML 2015.
- [3] Kaelbling, Learning to achieve goals, IJCAI 1993.

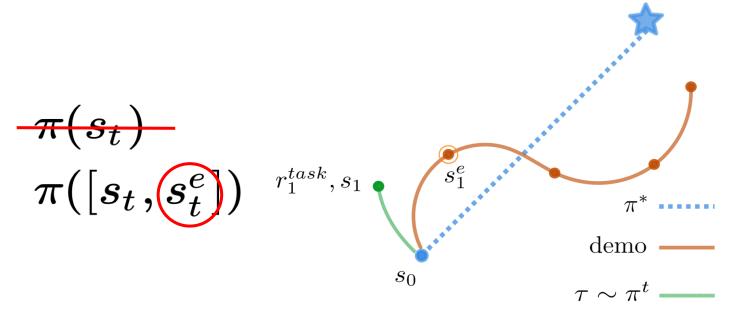


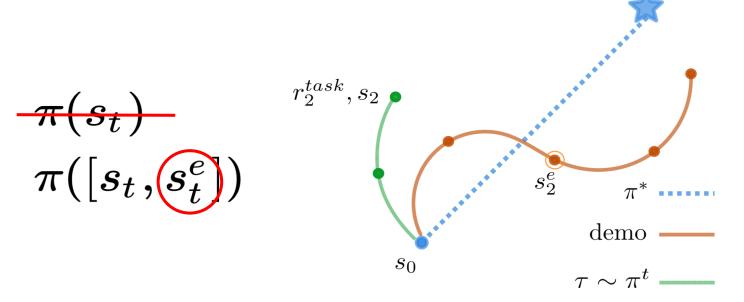


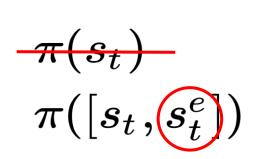


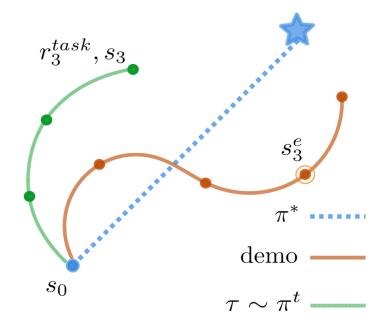


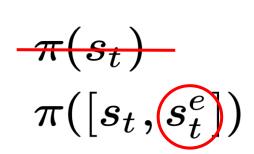


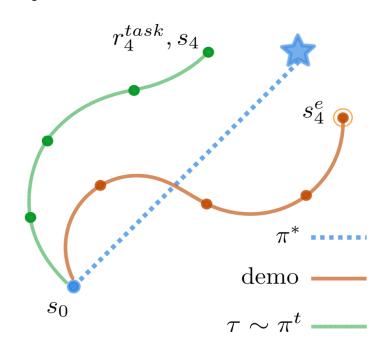


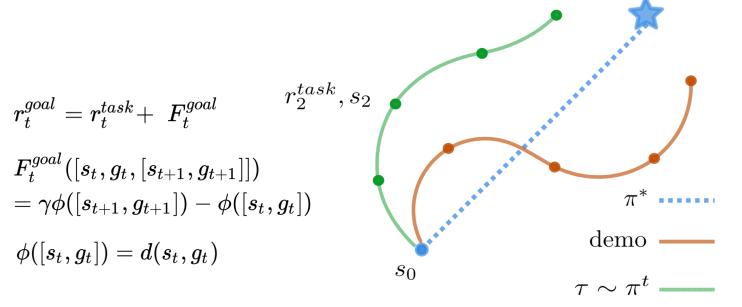


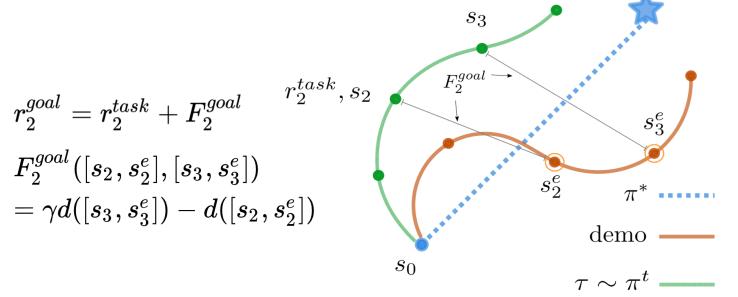


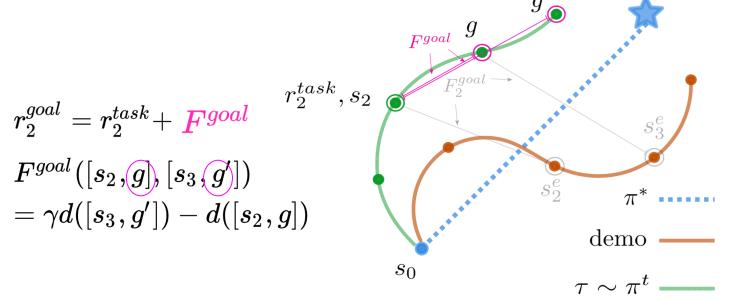










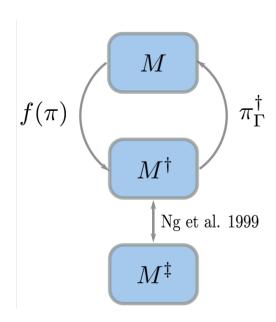


Method Summary

- Demonstration states as goals
- Goal-reaching potential reward
- Goal relabelling with achieved states (Hindsight Experience Replay) [1]

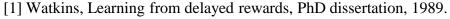
Policy invariance guarantee

<u>Theorem 1</u>: An optimal goal-conditioned policy learned by D-Shape can be optimally executed with any sequence of goals.

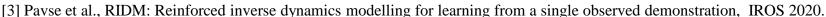


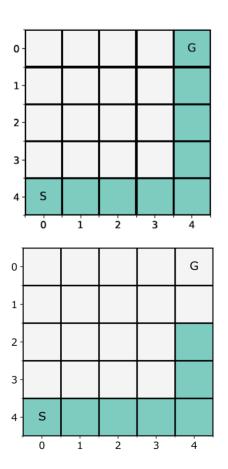
Experimental Setting

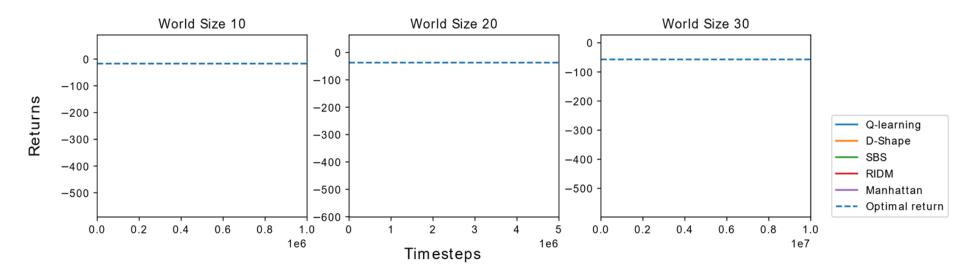
- Goal-based $s \times s$ gridworld, $s \in [10, 20, 30]$
- Baselines:
 - Q-learning [1]
 - SBS [2]
 - RIDM [3]
 - RL+ Manhattan distance reward
- Demonstrations: optimal, suboptimal
- Desiderata:
 - sample efficiency
 - convergence to optimal returns

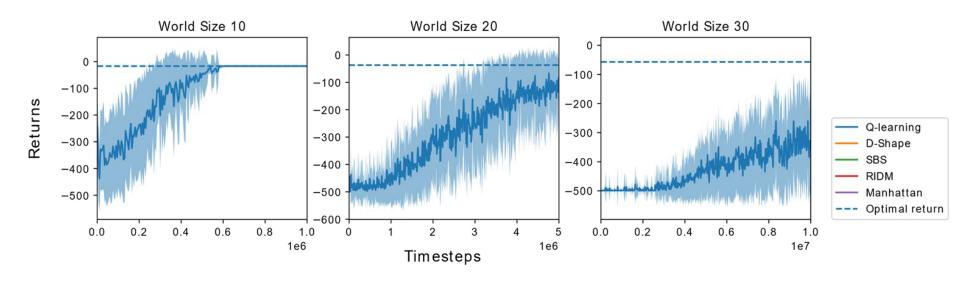


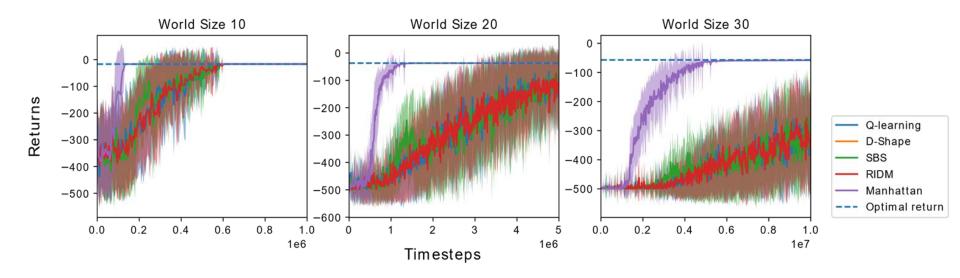
^[2] Brys et al., Reinforcement learning from demonstration through shaping, IJCAI 2015.

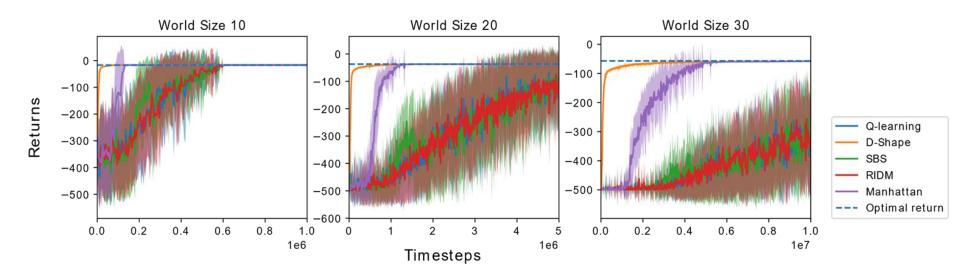




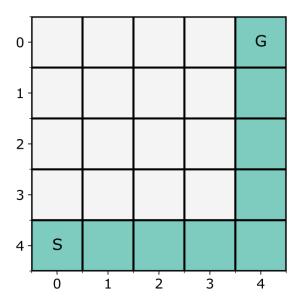


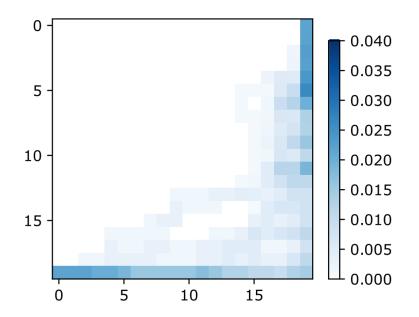


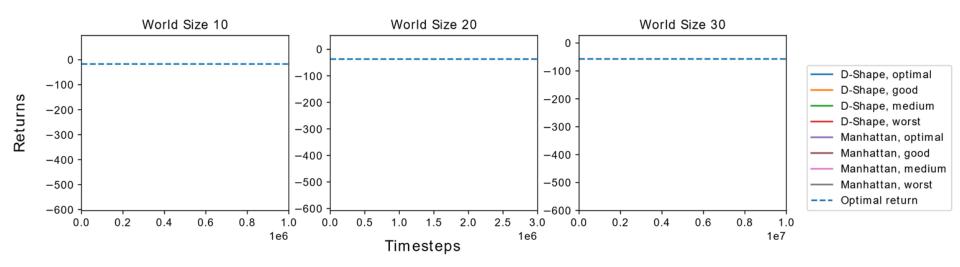


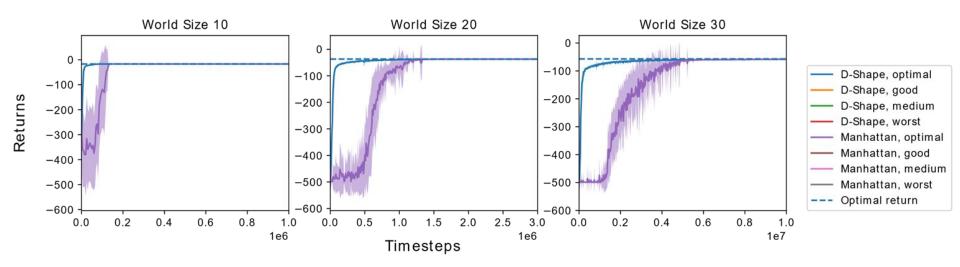


D-Shape State Visitation

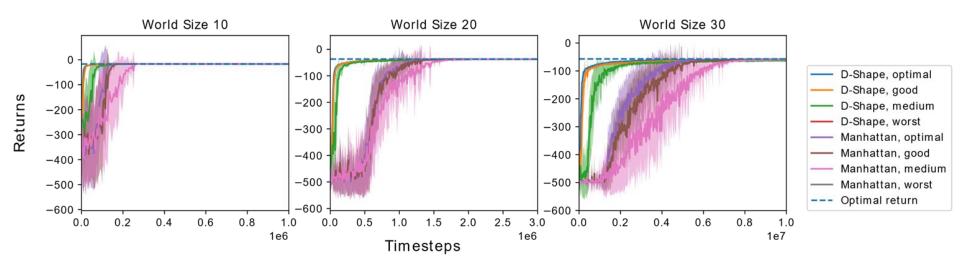


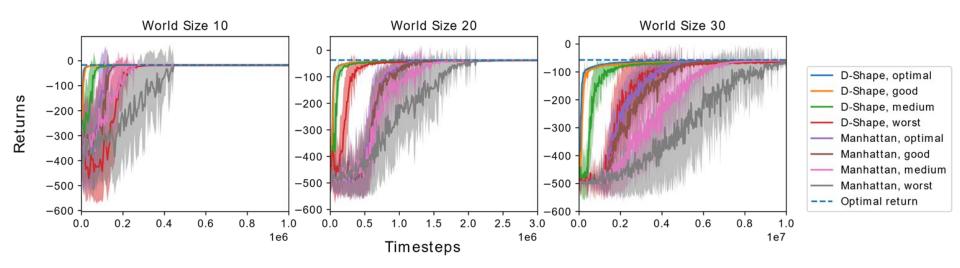












Conclusions

- D-Shape accelerates reinforcement learning given access to a single stateonly demonstration
- Future work:
 - Extending method to multiple demonstrations
 - Learned distance metrics for continuous state-action spaces
 - Exploring other GCRL techniques for RL + IL

Thanks for listening!

Caroline Wang caroline.l.wang@utexas.edu

Garrett Warnell garrett.a.warnell.civ@army.mi

Peter Stone pstone@cs.utexas.edu

https://arxiv.org/abs/2210.14428

Related Works

- RL+IL
 - Constructing rewards with demonstrations
 - Annealing hybrid rewards: Ding et al. 2019; Zolna et al. 2019.
 - Plan based reward shaping w/demos: Brys et al. 2015; Suay et al. 2016; Wu et al. 2021.
 - Optimizing only the task reward:
 - State augmentation: Pavse et al. 2020; Paine et al. 2018.
 - Resetting: Salimans and Chen 2018; Ecoffet et al. 2021; Nair et al. 2018.
 - Initializing with demonstration information: Hester et al. 2018; Taylor et al. 2011.
- Accelerating goal-conditioned RL with demonstrations
 - o Nair et al. 2018; Paul et al. 2019.

Citations (Related Work)

- [1] Brys et al. 2015. Reinforcement Learning from Demonstration through Shaping. In IJCAI. IJCAI.
- [2] Ding et al. 2019. Goal conditioned Imitation Learning. In NeurIPS.
- [3] Ecoffet et al. 2021. First return, then explore. Nature 590 (2021)
- [4] Hester et al. 2018. Deep Q-learning From Demonstrations. In AAAI.
- [5] Nair et al. 2018. Overcoming Exploration in Reinforcement Learning with Demonstrations. In ICRA.
- [6] Paine et al. 2018. One-Shot High Fidelity Imitation: Training Large-Scale Deep Nets with RL. ArXiv abs/1810.05017.
- [7] Paul et al. 2019. Learning from Trajectories via Subgoal Discovery. In Neurips.
- [8] Pavse et al. 2020. RIDM: Reinforced Inverse Dynamics Modeling for Learning from a Single Observed Demonstration. In IROS.
- [9] Salimans and Chen 2018. Learning Montezuma's Revenge from a Single Demonstration. In Workshop on Deep Reinforcement learning at NeurIPS.
- [10] Suay et al. 2016. Learning from Demonstration for Shaping through Inverse Reinforcement Learning. In AAMAS.
- [11] Taylor et al. 2011. Integrating reinforcement learning with human demonstrations of varying ability, In AAMAS.
- [12] Wu et al. 2021. Shaping Rewards for Reinforcement Learning with Imperfect Demonstrations using Generative Models. In ICRA.
- [13] Zolna et al. 2019. Reinforced Imitation in Heterogeneous Action Spaces, In Imitation Learning and its Challenges in Robotics Workshop at NeurIPS.