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Motivation

« Reinforcement learning (RL) can autonomously discover
optimal behavior from a reward function

_|_/ ...But can be

—_ sample inefficient
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Imitation learning (IL) methods can learn behaviors from
demonstrations with high sample efficiency

N

O]

N

...but usually
assumes multiple,
optimal, state-
action
demonstrations
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Challenges of Combining RL and IL

e |L objective: divergence minimization from demonstration
distribution [1, 2]

e RL objective: cumulative task reward

Suboptimal demonstrations = Potential conflict
between IL and RL objectives!

[1] Ghasemipour et al., A divergence minimization perspective on imitation learning methods, CoRL 2019.
[2] Ke et al., imitation learning as f-divergence minimization, WAFR 2020.
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Can we improve sample efficiency of
reinforcement learning with minimal
demonstration knowledge,

while preserving optimality guarantees?

*
*
*
*
*
*

We assume access to a single, suboptimal,
state-only demonstration trajectory.
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Background

e Markov decision process M = (S, A, P,r'%*(s,a,s'),7)
o Horizon H
o Objective: E, [S 5" Atrtosk]

e Imitation from observation [1]: assumes access to state-only demonstrations
e __ H
— {3? T

[1] Torabi et al., Recent advances in imitation from observation, IJCAI 2019. 6
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Background

e Potential-based reward shaping (PBRS) [1]:
o Learning is conducted in modified MDP,
where M = (S,A,P,R :=rt** 4 F ~)
o Policy invariance F(s,s") =~v¢(s") — ¢(s).

e Goal-conditioned RL (GCRL) [2, 3]:
o Given a goal-reaching task, objective Is to learn a goal-conditioned
policy m(:| [s, g]) that can reach any goal g drawn from goal set G
o Reward function is typically sparsely informative
o E.g. r? =15,z

[1] Ng et al., Policy invariance under reward transformations, ICML 1999.
[2] Schaul et al., Universal value function approximators, ICML 2015.
[3] Kaelbling, Learning to achieve goals, 1JCAI 1993.
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory

oal oal
,rg — ,riask T th

FO([se, 91, [se11, 9e:1]])
= ’Y¢([5t+1,gt+1]) - ¢([3tagt])

¢([Stagt]) - d(sta gt)
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory

goal task
rgoel — ptask 4 prgoal

Fgoal 82,@ 83@

= ~vd([ss, d']) — d([s2, 9g])
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D-Shape: Shaping reinforcement learning with a suboptimal
demonstration trajectory

Method Summary

e Demonstration states as goals
e (Goal-reaching potential reward
e Goal relabelling with achieved states (Hindsight

Experience Replay) [1]

Policy invariance guarantee
Theorem 1: An optimal goal-conditioned policy
learned by D-Shape can be optimally executed with

any sequence of goals.

l Ng et al. 1999

[1] Andrychowicz et al, Hindsight experience replay, Neurips 2017. 20
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Experimental Setting o ;
 Goal-based s x s gridworld, s € [10, 20, 30] |
» Baselines:
— Q-learning [1] )
— SBS[2] = .
~ RIDM [3] S
— RL+ Manhattan distance reward ° ©
« Demonstrations: optimal, suboptimal .
« Desiderata: ,
— sample efficiency N
— convergence to optimal returns T3
[1] Watkins, Learning from delayed rewards, PhD dissertation, 1989. 0 1 2 3 4

[2] Brys et al., Reinforcement learning from demonstration through shaping, IJCAI 2015.

[3] Pavse et al., RIDM: Reinforced inverse dynamics modelling for learning from a single observed demonstration, IROS 2020. 21
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1. D-Shape improves sample efficiency
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Q-learning
D-Shape

SBS

RIDM
Manhattan
=== Optimal return
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1. D-Shape improves sample efficiency
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1. D-Shape improves sample efficiency
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1. D-Shape improves sample efficiency
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D-Shape State Visitation
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2. Learning with suboptimal demonstrations

Tho Ursvarety of Tescs o Aentin

Suboptimality Type | : demonstration trajectory goes to incorrect goal state

-100 -
-200
-300
—400

=500 A

—-600

World Size 10

1e6

World Size 20

0_

—100 A

—200 -

—300 -

-400 -

—500 A

—600 -

World Size 30

—100 4

—200 A

—300 A

—400 A

—-500 A

0.0 0.2 0.4 0.6 0.8 1.0 0.

6
Timesteps b

—600

0 05 10 15 20 25 3.0 0.

0 0.2 0.4 0.6 0.8 1.0
1e7

—— D-Shape, optimal
~—— D-Shape, good
—— D-Shape, medium
—— D-Shape, worst
—— Manhattan, optimal
—— Manhattan, good
—— Manhattan, medium
—— Manhattan, worst
=== Optimal return

27




©@ TEXAS [ Wang, Warnell, Stone. D-Shape, AAMAS 2023 || IN¢ 2

The University of Texas at Austin T Ursuerety of Taso ok

2. Learning with suboptimal demonstrations

Suboptimality Type | : demonstration trajectory goes to incorrect goal state
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2. Learning with suboptimal demonstrations

Suboptimality Type | : demonstration trajectory goes to incorrect goal state
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2. Learning with suboptimal demonstrations

Suboptimality Type | : demonstration trajectory goes to incorrect goal state
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2. Learning with suboptimal demonstrations

Suboptimality Type | : demonstration trajectory goes to incorrect goal state
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Conclusions

e D-Shape accelerates reinforcement learning given access to a single state-
only demonstration
e [uture work:
o Extending method to multiple demonstrations
o Learned distance metrics for continuous state-action spaces
o Exploring other GCRL techniques for RL + IL

32
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Thanks for listening!

Caroline Wang Peter Stone
caroline.l.wang@utexas.edu pstone@cs.utexas.edu

|E|§*i";'s=|§|
s
Elﬁ"fﬁ

Garrett Warnell https://arxiv.org/abs/2210.14428
garrett.a.warnell.civ@army.mi 33
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Related Works

e RL+IL
o Constructing rewards with demonstrations
m Annealing hybrid rewards: Ding et al. 2019; Zolna et al. 2019.
o Plan based reward shaping w/demos: Brys et al. 2015; Suay et al. 2016; Wu et
al. 2021.
o Optimizing only the task reward:
m State augmentation: Pavse et al. 2020; Paine et al. 2018.
m Resetting: Salimans and Chen 2018; Ecoffet et al. 2021; Nair et al. 2018.
m Initializing with demonstration information: Hester et al. 2018; Taylor et al.
2011.
e Accelerating goal-conditioned RL with demonstrations
o Nairetal. 2018; Paul et al. 2019.
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