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Motivation:
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[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018. 3
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Motivation:

- Multi-agent reinforcement learning (MARL) is challenging —
agents learning simultaneously makes the environment

nonstationary

- Strategies:

- Fully centralized learning

share model components or

- Centralized training, decentralized execution _ pon
require communication

(CTDE) 1

- Decentralized learning + communication!?

[1] Sunehag et al., Value Decomposition Networks for Cooperative Multiagent learning, AAMAS 2018. 5
[2] Jaques et al.,, Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning, ICML 2019.
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How can we foster team cooperation in the decentralized
learning scenario w/o explicit communication?

Fully decentralized learning: no shared model components or
communication between agents during training or execution

- Search-and-rescue robotics

- Autonomous driving MM M
- Scalability

- Parallelism




DM?: a MARL algorithm
that enables
cooperation in the
decentralized setting
w/o explicit
communication

Expert Team Demo
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Contributions

- Propose DM?, a decentralized MARL algorithm based on
independent distribution matching to encourage coordination
- Theoretical analysis shows
- Conditions under which DM? converges
- Expert policies are a Nash equilibrium for mixed task and
distribution matching reward

- Empirical validation in StarCraft Il tasks



Background: Stochastic Games

. Stochastic game!! (K, S, A, po, T, R,7)

Number of agents K

State space §

Action space A = A%

Initial state distribution po : A(S)

Transition function T :S X Ag x -+ x Ag_1 — A(S)
Reward function R, :Sx Ag X -+ x Ag_1 — R
Discount factor 7y

Per-agent policy mi : S~ A(4;)

[1] Littman, Markov Games as a Framework for Multi-agent Reinforcement Learning, ICML 1994.



Background: Distribution Matching

. Approach to imitation learning (IL) "2
- The per agent state-action visitation distribution

o0

prim (8,0:) == (1 —7)mi(ails) t_O’)’tP(St = s|mi, ™)

..should match the per expert state-action visitation
distribution pag ms_ (8, ;)

[1] Schaal, Learning from demonstration, NeurlPS 1997
[2] Ho and Ermon, Generative adversarial imitation learning, NeurlPS 2016 10
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Background: Distribution Matching

. Approach to imitation learning (IL) "2

A

\T

agent distribution

S S,

[1] Schaal, Learning from demonstration, NeurlPS 1997
[2] Ho and Ermon, Generative adversarial imitation learning, NeurlPS 2016

expert distribution
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Background: Distribution Matching

. Approach to imitation learning (IL) "2

A agent distribution expert distribution

(s
y 2 oL

[1] Schaal, Learning from demonstration, NeurlPS 1997
[2] Ho and Ermon, Generative adversarial imitation learning, NeurlPS 2016 12
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Individual distribution
matching leads to agent
policies converging to
compatible expert policies
Expert policies also constitute
a Nash equilibrium under a
mixed task and distribution
matching reward

13
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DM?=: Decentralized MARL via Distribution Matching

Algorithm 1: DM? (Decentralized MARL via
distribution matching)

Input: Number of agents K, expert demonstrations

=l Doy s Dy, environment env, number of
‘ epochs N, number of time-steps per epoch M,
. l . reward mixture coefficient ¢

1 fork=0,..., K —1do
2 Initialize discriminator parameters ¢y;
d 3 Initialize policy parameters 6;
emo OE 4 end
data . sforn=0,1,..., N —1do
6 Gatherm = 1, s.s 5 M steps of data
(™ @™ g from env;
rz,gazl 7 | fork=0.....K —1do
8 Sample M states from demonstration Dy,;
10 'r'e,nv 9 Update discriminator Dk
10 Get GAIL reward ', = —log Dy, 4(s™)
form = 1, ... ; M;
| 1 Set agent reward r,’fmm = e T Py, F
12 Update agent policy 7 with data
(8ms> @ms Thomiz) fOrm =1,..., M,
13 end
14 end

Output: K agent policies 7y

14
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Experimental Setting

. StarCraft Il Multi-Agent Challenge!! tasks
- 5mvs 6m (5v6)
- 3svs 4z (3sv4z)
« Baselines w/environment reward alone
- IPPO (decentralized)
- QMIX"?I (CTDE)
- R-MAPPO! (CTDE)
- Distribution Matching Baseline: DM2 w/SIL #

[1] Samvelyan et al., The StarCraft Multi-Agent Challenge, AAMAS 2019.
[2] Rashid et al., Qmix: Monotonic Value Function Factorisation for Deep Multi-agent Reinforcement Learning, ICML 2018.
[3] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.

[4] Oh et al., Self-Imitation Learning, ICML 2018. 15
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Experimental Setting

- MARL algorithm: Independent PPO (IPPO)!"

- Demonstrations from K experts
- State-only demonstrations sampled from saved IPPO and QMIX
checkpoints

- Per-agent reward function:

Timiz — Tenv + Ti,GAIL * C

[1] Yu et al., The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games, ArXiv 2021.
16
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. Sample efficiency of DM? vs baselines
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2. Coordination of expert demonstrations

Demonstrations could be concurrently sampled from jointly trained
expert policies

concurrent nonconcurrent
. DM?2 ablation
Jjoint
.. ablation
not joint

18
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2. Coordination of expert demonstrations
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