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¥ Problem Setup

Reinforcement Learning (RL) faces ongoing
challenges, particularly in large state spaces
— sample inefficiency
— poor generalization

Solution: causal state abstractions

- "
example task: grasp the pink bottle
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¥ Problem Setup

multiple tasks in the same environment
as K Markov decision processes:

(S, A, P, Rl,...,K)
non-redundant state space /' / \\ reward functions

S=S51x...x84s fortasks 1, ..., K
action unknown
Sspace transition
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¥ Problem Setup
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— smallest input space for RL to learn a task @g

— improve sample efficiency & generalization

reusable task 1: wash clothes in
— enable the agent to learn all tasks in the same
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¥ Prior Work 1

CDL

Wang et al, "Causal dynamics learning for task-independent state abstraction" ICML 2022.

— learns a dynamics model f:S; X A; = S¢4q
— the state abstraction identifies and keeps all
controllable state variables
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— includes an extra appliance for each task

— doesn’t include clock

reusable

— dynamics (and derived abstraction) are task-
independent dynamics
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¥ Prior Work 2
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TIA & Denoised MDPs

Fu et al, "Learning task informed abstractions" ICML 2021.
Wang et al, "Denoised MDPs: Learning world models better than the world itself" ICML 2022.

(T1A) During task learning:

—  Identify a minimal set of state variables that can @X@ @9
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predict rewards and the state variables’ own

dynamics
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Q@
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— dynamics models are specific to reward-relevant — dynamics specific to dynamics specific to
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¥ Causal Bisimulation Modeling (CBM)
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Can we combine the best of both worlds?
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— learn a causal dynamics model

minimal/sufficient

— given a task, learn a causal reward model to
identify reward relevant variables
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¥ Method (CBM) — causal state abstraction

Given causal dynamics and reward models,

derive the state abstraction as all ancestors of

the reward:

— parent variables affecting the reward

- affecting the parents via
dynamics
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¥ Method (CBM) - causal dynamics/reward models

Causality all-but-one test:

The dynamics/reward causal edge si - s, or si - r} exists
if s;is necessary for prediction.

For example, to determine if a dynamics edge s} — StJ+1 exists,

(st alse ) = o5/, )
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¥ Method (CBM) - causal dynamics/reward models

Causality all-but-one test:

The dynamics/reward causal edge st - s}, or s{ - r} exists
if s;1s necessary for prediction.

Similarly, to determine if a reward edge s} — rtj exists,

? .
p(rt] |St, at) ~ p(rtj|{st/sé, at})
conditional mutual information (CMI)
p(7]se o)

P(th|{5t/51§: at})
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¥ Method (CBM) - implicit dynamics model

implicit dynamics models $;,; = argmax;,, 9(St+1; St. At)
where g is a scalar scoring function
VS
explicit dynamics models 3;,; = f(s;, az)

in a nutshell:
e introduce a method to model implicit causal dynamics
e find that implicit dynamics models are more accurate than explicit models

@ check our paper for details.
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¥ Method (CBM)

e ™
causal dynamics model & causal reward models

task-independent

task-specific reward models
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¥ Results

N

DeepMind control suite Robosuite table-top manipulation

Zhu et al “Robosuite: A modular simulation framework and benchmark for robot

Tassa et al. "Deepmind control suite.” arXiv 2018. learning." arXiv 2020.

* Tasks: HalfCheetah, Walker * Environments: block (b), tool-use (1)
* Uncontrollable (20) and controllable * Tasks: pick (b), stack (b), series (t)
noise variables (20) *  Pick/stack: moveable and unmovable blocks

* High-dimensional *  Series: long horizon
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¥ Results - task learning sample efficiency
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Thank you!

Building Minimal and Reusable Causal State Abstractions

for Reinforcement Learning
(AAAI 2024)

Zizhao Wang*, Caroline Wang*, Xuesu Xiao, Yuke Zhu, and Peter Stone
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B Results — effect of implicit vs explicit dynamics models on
causality & abstraction accuracy

block tool-use
causal graph pick stack causal graph series
explicit 87.5 4+ 0.1 532+46 59.6+4.6 82.6 £0.2 800=x1.5
implicit (ours) 90504 95760 95.7+6.0 855+0.1 988+ 1.3

Table 1: Mean + std. error of accuracy (1) for learned dynamics causal graphs and task abstractions.

causal graph accuracy = correctly classified graph edges / all possible edges
abstraction accuracy = correctly categorized state variables / all state variables
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