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Problem Setup

Reinforcement Learning (RL) faces ongoing 

challenges, particularly in large state spaces

- sample inefficiency

- poor generalization

Solution: causal state abstractions
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example task: grasp the pink bottle



Problem Setup

multiple tasks in the same environment

as K Markov decision processes:

(𝑆, 𝐴, 𝑃, 𝑅1,…,𝐾 )

3

state space 

𝑆 = 𝑆1 ×⋯× 𝑆𝑑𝑆

action

space

unknown 

transition

reward functions 

for tasks 1,… , 𝐾
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non-redundant



Problem Setup

State abstractions should be…

minimal and sufficient

- smallest input space for RL to learn a task

- improve sample efficiency & generalization

reusable

- enable the agent to learn all tasks in the same 

environment

- avoid learning each task from scratch

But how?
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Prior Work 1

CDL
Wang et al, "Causal dynamics learning for task-independent state abstraction" ICML 2022.

- learns a causal dynamics model 𝑓: 𝑆𝑡 × 𝐴𝑡 → 𝑆𝑡+1
- the state abstraction identifies and keeps all 

controllable state variables

minimal / sufficient   ×

- includes an extra appliance for each task

- doesn’t include clock

reusable   ✓

- dynamics (and derived abstraction) are task-

independent
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Prior Work 2

TIA & Denoised MDPs
Fu et al, "Learning task informed abstractions" ICML 2021.

Wang et al, "Denoised MDPs: Learning world models better than the world itself" ICML 2022.

(TIA) During task learning:

- Identify a minimal set of state variables that can 

predict rewards and the state variables’ own 

dynamics

minimal/sufficient    ✓

- by analyzing relevance to the reward

reusable   ×

- dynamics models are specific to reward-relevant 

state variables
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Causal Bisimulation Modeling (CBM)

Can we combine the best of both worlds?

reusable   ✓

- learn a causal dynamics model

minimal/sufficient    ✓

- given a task, learn a causal reward model to 

identify reward relevant variables
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Method (CBM) – causal state abstraction

Given causal dynamics and reward models, 

derive the state abstraction as all ancestors of 

the reward:

- parent variables affecting the reward

- ancestor variables affecting the parents via 

dynamics
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Method (CBM) – causal dynamics/reward models

Causality all-but-one test:

The dynamics/reward causal edge 𝒔𝒕
𝒊 → 𝒔𝒕+𝟏

𝒋
or 𝒔𝒕

𝒊 → 𝒓𝒕
𝒋

exists 

if 𝒔𝒕
𝒊 is necessary for prediction.

For example, to determine if a dynamics edge 𝑠𝑡
𝑖 → 𝑠𝑡+1

𝑗
exists,
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𝑝 𝑠𝑡+1
𝑗

𝑠𝑡 , 𝑎𝑡 ≈ 𝑝 𝑠𝑡+1
𝑗

𝑠𝑡/𝑠𝑡
𝑖 , 𝑎𝑡

?
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Method (CBM) – causal dynamics/reward models

Causality all-but-one test:

The dynamics/reward causal edge 𝒔𝒕
𝒊 → 𝒔𝒕+𝟏

𝒋
or 𝒔𝒕

𝒊 → 𝒓𝒕
𝒋

exists 

if 𝒔𝒕
𝒊 is necessary for prediction.

Similarly, to determine if a reward edge 𝑠𝑡
𝑖 → 𝑟𝑡

𝑗
exists, 
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𝑝 𝑟𝑡
𝑗
𝑠𝑡 , 𝑎𝑡 ≈ 𝑝 𝑟𝑡

𝑗
𝑠𝑡/𝑠𝑡

𝑖 , 𝑎𝑡
?

conditional mutual information (CMI)

CMI = 𝐄𝑠,𝑎,𝑟 log
𝑝 𝑟𝑡

𝑗
𝑠𝑡 , 𝑎𝑡

𝑝 𝑟𝑡
𝑗

𝑠𝑡/𝑠𝑡
𝑖 , 𝑎𝑡

CMI = 𝐄𝑠,𝑎,𝑟 log
𝑝 𝑟𝑡

𝑗
𝑠𝑡 , 𝑎𝑡

𝑝 𝑟𝑡
𝑗

𝑠𝑡/𝑠𝑡
𝑖 , 𝑎𝑡

CMI = 𝐄𝑠,𝑎,𝑟 log
𝑝 𝑟𝑡

𝑗
𝑠𝑡 , 𝑎𝑡

𝑝 𝑟𝑡
𝑗

𝑠𝑡/𝑠𝑡
𝑖 , 𝑎𝑡
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implicit dynamics models Ƹ𝑠𝑡+1 = argmax𝑠𝑡+1𝑔(𝑠𝑡+1; 𝑠𝑡 , 𝑎𝑡)

where 𝑔 is a scalar scoring function

vs

explicit dynamics models Ƹ𝑠𝑡+1 = 𝑓 𝑠𝑡 , 𝑎𝑡

in a nutshell:

● introduce a method to model implicit causal dynamics

● find that implicit dynamics models are more accurate than explicit models

check our paper for details.

Method (CBM) – implicit dynamics model
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Method (CBM)



Results
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DeepMind control suite Robosuite table-top manipulation 

Tassa et al. "Deepmind control suite.“ arXiv 2018.
Zhu et al “Robosuite: A modular simulation framework and benchmark for robot 

learning." arXiv 2020.
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• Tasks: HalfCheetah, Walker

• Uncontrollable (20) and controllable 

noise variables (20)

• High-dimensional

• Environments: block (b), tool-use (t)

• Tasks: pick (b), stack (b), series (t)

• Pick/stack: moveable and unmovable blocks

• Series: long horizon



Results - task learning sample efficiency
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Thank you! 
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Results – effect of implicit vs explicit dynamics models on 
causality & abstraction accuracy
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causal graph accuracy = correctly classified graph edges / all possible edges

abstraction accuracy = correctly categorized state variables / all state variables
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