Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning (AAAI 2024)

Zizhao Wang*, Caroline Wang*, Xuesu Xiao, Yuke Zhu, and Peter Stone

1

Problem Setup

Reinforcement Learning (RL) faces ongoing challenges, particularly in large state spaces

- sample inefficiency
- poor generalization

Solution: causal state abstractions

example task: grasp the pink bottle

Problem Setup

multiple tasks in the same environment as *K* Markov decision processes:

Problem Setup

State abstractions should be...

minimal and sufficient

- smallest input space for RL to learn a task
- improve sample efficiency & generalization

reusable

- enable the agent to learn all tasks in the same environment
- avoid learning each task from scratch

But how?

task 1: wash clothes in

task 2: cook dinner

$$R_t^2:=\mathbb{1}ig[$$
 finish $\overset{\circ}{\swarrow}$ at $ig)ig]$

Prior Work 1

CDL

Wang et al, "Causal dynamics learning for task-independent state abstraction" ICML 2022.

- learns a *causal* dynamics model $f: S_t \times A_t \to S_{t+1}$
- the state abstraction identifies and keeps all controllable state variables

minimal / sufficient ×

- includes an extra appliance for each task
- doesn't include clock

reusable 🗸

 dynamics (and derived abstraction) are taskindependent

Prior Work 2

TIA & Denoised MDPs

Fu et al, "Learning task informed abstractions" ICML 2021. Wang et al, "Denoised MDPs: Learning world models better than the world itself" ICML 2022.

(TIA) During task learning:

 Identify a minimal set of state variables that can predict rewards and the state variables' own dynamics

minimal/sufficient

by analyzing relevance to the reward

reusable ×

 dynamics models are specific to reward-relevant state variables

Causal Bisimulation Modeling (CBM)

Can we combine the best of both worlds?

reusable 🗸

- learn a causal dynamics model
 minimal/sufficient
- given a task, learn a causal reward model to identify reward relevant variables

Method (CBM) – causal state abstraction

Given causal dynamics and reward models, derive the **state abstraction** as all **ancestors** of the reward:

- parent variables affecting the reward
- ancestor variables affecting the parents via dynamics

Method (CBM) – causal dynamics/reward models

Causality **all-but-one** test:

The dynamics/reward causal edge $s_t^i \rightarrow s_{t+1}^j$ or $s_t^i \rightarrow r_t^j$ exists if s_t^i is necessary for prediction.

For example, to determine if a dynamics edge $s_t^i \rightarrow s_{t+1}^j$ exists,

 $p(s_{t+1}^{j}|s_{t},a_{t}) \approx p(s_{t+1}^{j}|\{s_{t}/s_{t}^{i},a_{t}\})$

Method (CBM) - causal dynamics/reward models

Causality **all-but-one** test:

The dynamics/reward causal edge $s_t^i \rightarrow s_{t+1}^j$ or $s_t^i \rightarrow r_t^j$ exists if s_t^i is necessary for prediction.

Similarly, to determine if a reward edge $s_t^i \rightarrow r_t^j$ exists,

$$p(r_t^j | s_t, a_t) \stackrel{?}{\approx} p(r_t^j | \{s_t / s_t^i, a_t\})$$

conditional mutual information (CMI) $CMI = \mathbb{R}_{s,a,r} \log \frac{p(r_t^j | s_t, a_t)}{p(r_t^j | \{s_t/s_t^i, a_t\})}$

Method (CBM) – implicit dynamics model

implicit dynamics models $\hat{s}_{t+1} = \operatorname{argmax}_{s_{t+1}} g(s_{t+1}; s_t, a_t)$ where g is a scalar scoring function vs **explicit** dynamics models $\hat{s}_{t+1} = f(s_t, a_t)$

in a nutshell:

- introduce a method to model *implicit* causal dynamics
- find that implicit dynamics models are more accurate than explicit models

Method (CBM)

DeepMind control suite

Tassa et al. "Deepmind control suite." arXiv 2018.

- <u>Tasks</u>: HalfCheetah, Walker
- Uncontrollable (20) and controllable noise variables (20)
- High-dimensional

Robosuite table-top manipulation

Zhu et al "Robosuite: A modular simulation framework and benchmark for robot learning." arXiv 2020.

- <u>Environments</u>: block (b), tool-use (t)
- <u>Tasks</u>: pick (b), stack (b), series (t)
- Pick/stack: moveable and unmovable blocks
- Series: long horizon

Results - task learning sample efficiency

Thank you!

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

(AAAI 2024)

Zizhao Wang*, Caroline Wang*, Xuesu Xiao, Yuke Zhu, and Peter Stone

Results – effect of implicit vs explicit dynamics models on causality & abstraction accuracy

	block			tool-use	
	causal graph	pick	stack	causal graph	series
explicit implicit (ours)	87.5 ± 0.1 90.5 \pm 0.4	53.2 ± 4.6 95.7 \pm 6.0	59.6 ± 4.6 95.7 ± 6.0	82.6 ± 0.2 85.5 ± 0.1	80.0 ± 1.5 98.8 ± 1.3

Table 1: Mean \pm std. error of accuracy (\uparrow) for learned dynamics causal graphs and task abstractions.

causal graph accuracy = correctly classified graph edges / all possible edges abstraction accuracy = correctly categorized state variables / all state variables