Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning (AAAI 2024)

Zizhao Wang*, Caroline Wang*, Xuesu Xiao, Yuke Zhu, and Peter Stone

1

Problem Setup

Reinforcement Learning (RL) faces ongoing challenges, particularly in large state spaces

- sample inefficiency
- poor generalization

Solution: causal state abstractions

example task: grasp the pink bottle

Problem Setup

multiple tasks in the same environment as *K* Markov decision processes:

Problem Setup

State abstractions should be…

minimal and sufficient

- smallest input space for RL to learn a task
- improve sample efficiency & generalization

reusable

- enable the agent to learn all tasks in the same environment
- avoid learning each task from scratch

But how?

task 1: wash clothes in

$$
R^1_t:=\mathbb{1}\Big[\text{ } \textcolor{red}{\bullet} \text{ finishes the cycle }\Big]
$$

task 2: cook dinner

$$
R_t^2 := \mathbb{1}\big[\text{ finish } \sum_{i=1}^{\infty} \text{ at } \bigcirc\bigcirc\bigg]
$$

Prior Work 1

CDL

Wang et al, "Causal dynamics learning for task-independent state abstraction" ICML 2022.

- learns a *causal* dynamics model $f: S_t \times A_t \rightarrow S_{t+1}$
- the state abstraction identifies and keeps all *controllable* state variables

minimal / sufficient ×

- includes an extra appliance for each task
- doesn't include clock

reusable ✓

- dynamics (and derived abstraction) are taskindependent

Prior Work 2

Ö

TIA & Denoised MDPs

Fu et al, "Learning task informed abstractions" ICML 2021. Wang et al, "Denoised MDPs: Learning world models better than the world itself" ICML 2022.

(TIA) During task learning:

Identify a minimal set of state variables that can predict rewards and the state variables' own dynamics

minimal/sufficient ✓

by analyzing relevance to the reward

reusable ×

- dynamics models are specific to reward-relevant state variables

Causal Bisimulation Modeling (CBM)

Can we combine the best of both worlds?

reusable ✓

- learn a causal dynamics model **minimal/sufficient** ✓
- given a task, learn a causal reward model to identify reward relevant variables

Method (CBM) – causal state abstraction

Given causal dynamics and reward models, derive the state abstraction as all ancestors of the reward:

- parent variables affecting the reward
- ancestor variables affecting the parents via dynamics

Method (CBM) – causal dynamics/reward models

Causality **all-but-one** test:

The dynamics/reward causal edge $s^i_t \rightarrow s^j_{t+1}$ or $s^i_t \rightarrow r^j_t$ exists if s_t^i is necessary for prediction.

For example, to determine if a dynamics edge $s_t^i \rightarrow s_{t+1}^j$ exists,

 $p(s_{t+1}^j | s_t, a_t) \approx p(s_{t+1}^j | \{s_t/s_t^i, a_t\})$?

Method (CBM) – causal dynamics/reward models

Causality **all-but-one** test:

The dynamics/reward causal edge $s^i_t \rightarrow s^j_{t+1}$ or $s^i_t \rightarrow r^j_t$ exists if s_t^i is necessary for prediction.

Similarly, to determine if a reward edge $s_t^i \rightarrow r_t^j$ exists,

$$
p(r_t^j | s_t, a_t) \stackrel{?}{\approx} p(r_t^j | \{s_t/s_t^i, a_t\})
$$

conditional mutual information (CMI)

$$
\text{CMI} = \mathbb{E}_{\text{s,a},\text{a}} \left[\log \frac{p(r_t^j \big| s_t, a_t)}{p(r_t^j \big| \{s_t/s_t^i, a_t\} \big) } \right]
$$

Method (CBM) – implicit dynamics model

implicit dynamics models $\hat{s}_{t+1} = \text{argmax}_{s_{t+1}} g(s_{t+1}; s_t, a_t)$ where q is a scalar scoring function vs **explicit** dynamics models $\hat{s}_{t+1} = f(s_t, a_t)$

in a nutshell:

- introduce a method to model *implicit* causal dynamics
- find that implicit dynamics models are more accurate than explicit models

$$
\mathcal{F}
$$
 check our paper for details.

Method (CBM)

- Tasks: HalfCheetah, Walker
- Uncontrollable (20) and controllable noise variables (20)
- High-dimensional

DeepMind control suite DeepMind control suite

Tassa et al. "Deepmind control suite." arXiv 2018. Zhu et al "Robosuite: A modular simulation framework and benchmark for robot learning." arXiv 2020.

- Environments: block (b), tool-use (t)
- Tasks: pick (b), stack (b), series (t)
- Pick/stack: moveable and unmovable blocks
- Series: long horizon

Results - task learning sample efficiency

Thank you!

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

(AAAI 2024)

Zizhao Wang*, Caroline Wang*, Xuesu Xiao, Yuke Zhu, and Peter Stone

Results – effect of implicit vs explicit dynamics models on causality & abstraction accuracy

Table 1: Mean \pm std. error of accuracy (\uparrow) for learned dynamics causal graphs and task abstractions.

causal graph accuracy = correctly classified graph edges / all possible edges abstraction accuracy = correctly categorized state variables / all state variables